

Predictive Gene Editing Using CRISPR and AI: Synergistic Advances in Genomic Therapeutics

Author: Dhairyा Tiwari, High school student, Divya Jyot School, Gujarat, India

ABSTRACT

Artificial intelligence (AI) acts as an accelerant in genome engineering, improving gRNA design, off-target prediction, and editing efficiency optimization in cell- and context-dependent settings. However, translation into the clinic is still curtailed because of dataset bias and inconsistencies in DNA-repair reactions and delivery. We summarize currently available AI-based methods for gRNA scoring and off-target prediction and repair outcome modelling and offer a comparative evaluation of obvious tools (Deep CRISPR, CRISPR-Net, SPROUT, Prime Design AI). We incorporate experimental datasets for benchmarking (e.g., GUIDE-seq, Digenome-seq), elucidate the shortcomings in generalization across cell types, and deliberate ethics and regulations pertaining to clinical applications. The paper concludes with the outline of a standardized pipeline for AI-aided CRISPR research—reporting guidelines, minimal benchmarking metrics, and reproducibility practices—to foster the rapid, safe, fair, and transparent translation of predictive gene editing into therapeutics.

KEYWORDS: Artificial intelligence, Gene editing, CRISPR

1. Introduction

Gene editing is a powerful technology that allows precise modification of the DNA of an organism. The technique allows the introduction of new genes, the removal of faulty sequences, and the fixing of mutations (Kolanu, 2024). The CRISPR-Cas9 system is the most outstanding tool for this endeavour; it is an evolution of a bacterial immune system. The system employs the Cas9 enzyme along with a guide RNA (gRNA) to identify and cut specific DNA sequences for genetic modification (Hossain, 2021). Once double-stranded DNA cleavage has taken place, the cell repair mechanisms (non-homologous end joining, or NHEJ, and homology-directed repair, or HDR) may assist gene-editing applications for greater efficiency and precision (Haider & Mussolini, 2025). Predictive gene editing associates CRISPR-Cas technologies with artificial intelligence, thus revolutionizing genomic medicine. CRISPR is a simple yet multifaceted genome editing tool, which allows unprecedented strategies for the accurate alteration of DNA sequences, thus unleashing new potentials in treating genetic disorders, infectious diseases, and cancers. Yet the intricate genomic information, together with the off-target effects, inefficient delivery, and multiple repair mechanisms diversity, require integrating AI for enhanced precision, security, and scalability. AI-powered models such as DeepCRISPR, CRISTA, and SPROUT have exhibited exceptional ability to predict guide RNA (gRNA) efficiency, off-target risk prediction, and prediction of editing outcomes, thus significantly enhancing the design and performance of CRISPR experiments in terms of efficiency and reliability. (Dixit et al., 2024). Predictive modelling utilizes deep learning techniques coupled with multi-omics to predict cellular response, engineer the best Cas protein variants, and customize treatment regimens based on the genomic features of patients. The combination of CRISPR technology and machine learning hastened the identification of precision therapies and opened new doors in precision medicine, vaccine design, and diagnostics (Lee, 2023). The integration of AI with CRISPR technologies represents a paradigm shift in genomic medicine. It enables predictive, personalized, and scalable gene editing that addresses longstanding limitations in specificity and delivery. This convergence not only enhances experimental design and therapeutic precision but also opens new frontiers in translational research, clinical diagnostics, and individualized treatment planning. As predictive gene editing continues to evolve, it holds the promise of transforming healthcare by enabling safer, faster, and more effective interventions tailored to the genetic makeup of each patient. This review concentrates on the current advancements of predictive gene editing technology, which lies at the crossroads of CRISPR and AI, to highlight their converging benefits to modern genomic medicine.

2. Current State of Predictive Gene Editing

2.1 CRISPR-Cas systems: The foundation of accurate genomic modification.

Since their programmability and high efficiency made them heavyweight genome editors, CRISPR-Cas9 and its relatives (Cas12a, Cas13, base editors, and prime editors) are still considered heavyweight genome editors. These entities may edit changes in specific sites of

DNA, including insertions, deletions, and single-nucleotide variations (Hillary & Ceasar, 2023). Base editing and prime editing perform site-specific editing without double-strand breaks, reducing off-targeting and making the procedure safer. CRISPR-Cas systems are currently being applied in clinical trials that cure sickle cell anaemia and inherited blindness (Matsoukas, 2020).

2.2 Integration with Artificial Intelligence: Increasing Predictive Capability

Artificial intelligence algorithms are at a pivotal juncture to enhance CRISPR outcomes by predicting gRNA performance, reducing off-targeting, and controlling selection of repair processes. Predictive gene editing relies on AI-designed guide RNAs, required to guide nucleases such as Cas9 or Cas12a to DNA target sites. Genome editing hinges on the effectiveness of these guide RNAs; ineffective design results in waste editing, off-target gene modification, and unstable repair processes. (Manghwar et al., 2020). They utilize convolutional neural networks (CNNs), recurrent neural networks (RNNs), and graph neural networks (GNNs) to eliminate large genomic data and make highly efficient and low-risk gRNA predictions. AI models surmount these challenges by foretelling genomic contexts, target accessibility, and repair dynamics to obtain highly optimized gRNA sequences, thereby rendering CRISPR-based approaches more accurate and predictable.(Vaz & Balaji, 2021). Table 1 shows comparative analysis of conventional CRISPR techniques versus AI-integrated CRISPR methodologies

Feature	Traditional CRISPR	AI-Enhanced CRISPR
gRNA Design	Manual trial-and-error	AI-optimized predictions
Off-target Risk	Higher	Lower (via predictive scoring)
Personalization	Generic	Tailored to the patient's genome
Efficiency	Moderate	High (optimized gRNAs)
Outcome Prediction	Uncertain	Simulated editing outcomes
Time Required	Slower experimental validation	Faster due to AI

Table 1. Comparison between traditional CRISPR and AI-enhanced CRISPR approaches.

2.3 Implementations in Precision Medicine

AI-designed gRNA is transforming precision medicine by optimizing CRISPR approaches to achieve optimal precision and safety. It repairs mutations with pinpoint accuracy in monogenic diseases such as sickle cell anaemia to perfect cancer immunotherapy via CAR-T cell engineering and facilitate RNA-target therapies with CRISPR-Cas13 for HIV and COVID-19 (Uddin et al. 2020). These developments all originate from AI's ability to simulate the cellular and genetic environments and predict the molecular outcomes, thereby assisting in interventions which are highly effective and tailored to each case(Uddin et al. 2020).

2.4 Barriers and Constraints

Despite the swift progress in predictive gene editing, the wider implementation of diverse elements is restricted. Data bias does not enable the scalability of small, cell-specific data-set-trained artificial intelligence models to produce accurate guide RNA predictions in other biological contexts (Hwang et al., 2024). Complications in delivery, such as immune responses and tissue specificity, are still not adequately addressed by artificial intelligence, especially in *in vivo* contexts (Ansah et al., 2022). Furthermore, due to ethical issues surrounding transparency, informed consent, and inadvertent gene mutation, there should be accountable and explainable AI tools (Markus, Kors, & Rijnbeek, 2021). These limitations should be bypassed through the setting of stringent regulations, richer data sets, and creative collaboration between multiple disciplines for safe and equitable applications of AI-enabled CRISPR technologies.

2.5 Future Directions

The promise of future gene editing, with prediction, is towards highly individualized and advanced CRISPR-based therapies. Developments such as the integration of multimodal artificial intelligence, which integrates genomic, transcriptomic, and epigenomic information, enable guide RNA design to be contextually sensitive through improved precision (Athanasopoulou et al., 2025). Dynamic regulation during the editing process is enabled by real-time feedback mechanisms, thereby improving safety and efficiency (Braniff et al., 2025). The researchers are studying various quantum-boosted methods that will allow molecular-interaction simulations to be more accurate and faster (Pallavi et al., 2025). All these developments represent a transformative shift in the genome engineering landscape, pushing the edges toward greater flexibility and therapeutic capacity.

3. Off-Target Prediction in Predictive Gene Editing

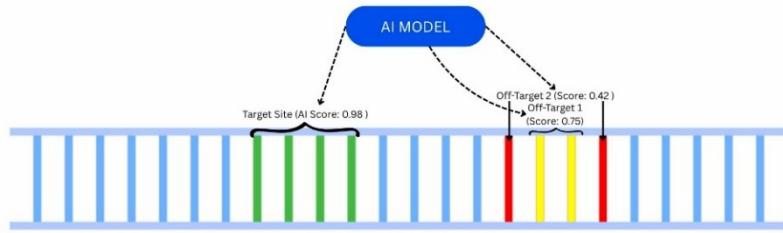
3.1 Why Are Off-Target Effects Important?

CRISPR-Cas editing off-targeting is off-target DNA cuts at similar sequences, which can be a source of issues such as mutations, misregulation of genes, and immune responses, especially in therapeutics. These issues need to be tested and controlled rigorously, as regulatory agencies have emphasized (Guo et al., 2023). Accurate and precise genome editing was made possible through predictive models, error-free Cas variants, and validation techniques.

3.2 AI-Driven Off-Target Prediction Models

Artificial intelligence-based platforms are revolutionizing off-target prediction in CRISPR-Cas editing by precisely emulating gRNA-DNA interactions. Sophisticated platforms like DeepCRISPR, CRISPR-Net, and AttnToCrispr use deep learning mechanisms like CNNs, RNNs, and transformers to inculcate sequence features, epigenetic information, and cell-specific features. (Du et al., 2025). These platforms are more sophisticated than scoring systems because they recognize complex mismatch patterns, chromatin accessibility, and PAM context, thus significantly improving accuracy and therapeutic safety. AI-powered CRISPR workflows use machine learning to optimize

guide RNA design, predict editing outcomes, automate experiments, and improve strategies—advancing precision medicine and genomics (figure 1).



3.3 Experimental Validation and Datasets

Experimental verification is vital for AI-regulated gene-editing technology safety, and data like GUIDE-seq, CRISPOR, BLESS, and Digenome-seq play critical roles. GUIDE-seq offers genome-wide information on off-target Cas9 activity, while CRISPOR provides a highly curated list of verified gRNAs and evaluates annotations against a gold standard. (Tsai et al., 2015). BLESS and Digenome-seq assist in double-strand break detection in vitro and in vivo, respectively. The tools facilitate successful training and optimization of AI models, thereby allowing the creation of clinically accurate CRISPR applications. (Li et al., 2023).

3.4 Context-Aware and Cell-Specific Prediction

Current models incorporated cell-type-specific gene expression and network gene properties to predict the effects of off-target alterations across different cell types. This is significant because the same gRNAs can produce different phenotypes depending on chromatin context, transcriptional dynamics, and cell position. (Konstantakos et al., 2022).

3.5 Restrictions and Future Enhancements

While AI has marginally pushed the field of predictive gene editing, profound challenges still haunt the advancement of this science. These are in the form of off-target dataset imbalance, poor ability to generalize to non-human cells, and transparency of deep learning models. Such challenges weigh high on matters concerning reliability and cross-species application, more so in agriculture and ecological fields. Offsets in the form of explainable AI, multi-omics integration of data, and real-time feedback mechanisms are being developed to increase the transparency, accuracy, and scalability of CRISPR technologies for more widespread biomedical and biotechnological use (Vidanagamachchi & Waidyaratna, 2024).

4. Clinical Applications

AI-based CRISPR technologies are improving the precision and safety of genetic medicine by boosting endogenous genome editing accuracy and safety. In diseases like

sickle cell anaemia and β -thalassemia, AI-optimized gRNAs and Cas9 designer variants have been shown to edit mutations in stem cells effectively with minimal off-targeting and less immune activation (Park & Bao, 2021). Likewise, AI-based CRISPR therapies for inherited blindness restore retinal cell gene function. (Burnight et al., 2018). Through simulation and optimization of editing outcomes and delivery, AI is making treatments more personalized and biologically compatible, a major precision medicine advance. (Serrano et al., 2024).

5. New Tools and Techniques

Predictive gene editing has recently embraced a series of novel tools, making CRISPR-technology highly accurate and versatile. DeepCRISPR 2.0 incorporates single-cell transcriptomics and 3D genome architecture information in its target predictions, allowing for context-dependent editing that is relevant to the cellular environment (Chuai et al., 2018). These neural networks (CNs) are used in CRISPR-Net to model DNA secondary structures and Cas variants, improving specificity and reducing adverse off-target effects. (Sherkatghanad et al., 2023). PrimeDesign AI targets prime editing by predicting pegRNA-reverse transcriptase conformations to optimize repair accuracy and allow for a wider range of precise nucleotide substitutions. LiveCRISPR combines biosensors and optogenetic control systems, thus enabling spatiotemporal control over Cas9 activity, allowing interventions that are dynamic and cell-type specific. (Yang et al., 2025). Hence, the tools together represent a major advancement toward gene engineering, offering safer, more efficient, and truly tunable approaches to editing for research and therapeutic applications. Table 2 shows AI-enabled modules for predicting off-target effects in CRISPR workflow.

Figure 2: AI integration points for off-target prediction in CRISPR systems.

6. Future Directions

Predictive gene editing is moving toward more enlightened, personalized, and ethical applications. Multi-omics data, complemented by artificial intelligence, enable the application of CRISPR therapeutics that consider gene expression, protein–protein interactions, and epigenetic regulation.(Liu et al., 2025) . Progressions such as CRISPR-Cas13 for targeting RNA and epigenetic regulators are shattering the limits of conventional DNA editing. (Zhu et al., n.d.). Ethical issues are being met by addressing technologies such as blockchain, with traceability, and open artificial intelligence

protocols, thus facilitating the creation of safer and more tailored genome engineering tools.

Results & Discussion

The combination of CRISPR-Cas systems and artificial intelligence (AI) has created a revolutionary period of predictive gene editing, thus expanding the scope of genomic medicine. CRISPR programming enables targeted DNA editing, which has therapeutic value for most genetic diseases, cancers, and infectious diseases. Even the inherent genomic architecture complexity, combined with issues of off-targeting, heterogeneous DNA repair mechanisms, and delivery efficiency, highlights the necessity of AI incorporation to enhance precision, safety, and scalability.(Chehelgerdi et al., 2024). Table 2 shows comparative summary of advanced AI-driven CRISPR systems and their functional highlights.

AI Model	Main function	Key features
DeepCRISPR	Predicts gRNA activity	Uses CNNs + Sequence context
CRISTA	gRNA-Cas9 binding efficiency	Integrates sequence + structural data
SPROUT	Predicts indel repair patterns post-editing	Indel outcome modelling
aiCRISPRL	Simulates stem cell/ organoid CRISPR edits	Hybrid AI framework
CRISPR-net	Models DNA secondary structures for editing specificity	Graph neural networks
PrimeDesign AI	PegRNA optimization for Prime editing	Reverse transcriptase conformations

Table 2. Summary of major AI-driven CRISPR models and their key features.

Artificial intelligence platforms such as DeepCRISPR, CRISTA, and SPROUT have been found to be highly effective in the prediction of guide RNA (gRNA) efficacy, risk of off-targeting, and editing-related outcomes. AI platforms utilize deep-learning algorithms and multi-omics information to mimic cellular responses, design optimized Cas protein variants, and design therapeutic strategies. By integrating factors such as chromatin accessibility, secondary structures in DNA, and gene expression profiles of various cell types, AI platforms allow context-dependent editing that was not possible using standard bioinformatics methods (Pandey et al., 2025). The interface between artificial intelligence and CRISPR has gold-embossed the very accurate therapeutic designs that build the walls along with its life sciences research that has been revived to become a discipline of dynamic experimentally-associated simulations. Predictive editing allows researchers the ability to predict the outcomes of gene-editing experiments prior to performing experiments in a laboratory setting, which potentially limits costs incurred in experimentation and may also enhance reproducibility. This change of scenario is crucial in a realm in which AI-powered CRISPR tools are repairing disease-causing mutations,

reprogramming immune cells, and building custom vaccines-a domain known as precision medicine (Ansori et al., 2023). Nevertheless, several challenges still exist. Current AI algorithms are still biased by data and are not extensively generalizable to different cell types and species. Interpretability of deep learning predictions is still difficult to achieve, and transparency, as well as clinical accountability issues, arise as the new breakthroughs approach clinical translation. It is time that ethical questions on germline editing, data privacy, and algorithmic fairness started to be addressed (Ennab & Mcheick, 2024). Multimodal data integrating genomics, transcriptomics, proteomics, and epigenomics; will be required in the future in producing enhanced predictive models (Wu & Xie, 2025). Implantable AI platforms and real-time feedback mechanisms might be set forth for the dynamic control of CRISPR activity within living organisms, with blockchain-based traceability systems holding promise for developmental regulatory control (Abbasi et al., 2025). CRISPR technologies in RNA editing and epigenome modification have vastly improved therapeutic potentials, thus making AI-guided gene editing the cornerstone of future medicine-now termed next-generation medicine.

Conclusion

AI and CRISPR have changed gene editing in genomic medicine towards greater precision and personalization. Despite challenges of bias, delivery inefficiencies, and ethics, advancing artificial intelligence algorithms and data assimilation are overcoming these barriers. This marriage will evolve as a critical foundation of precision medicine and therapeutic innovation.

References

1. Kolanu, N. D. (2024). CRISPR-Cas9 gene editing: Curing genetic diseases by inherited epigenetic modifications. *Global Medical Genetics*, 11(1), 113–122. <https://doi.org/10.1055/s-0044-1785234>
2. Irfan, M., Majeed, H., Iftikhar, T., & Ravi, P. K. (2024). A review on molecular scissoring with CRISPR/Cas9 genome editing technology. *Toxicology Research*, 13(4), tfae105. <https://doi.org/10.1093/toxres/tfae105>
3. Hossain, M. A. (2021). CRISPR-Cas9: A fascinating journey from bacterial immune system to human gene editing. *Progress in Molecular Biology and Translational Science*, 178, 63–83. <https://doi.org/10.1016/bs.pmbts.2021.01.001>
4. Haider, S., & Mussolini, C. (2025). Fine-tuning homology-directed repair (HDR) for precision genome editing: Current strategies and future directions. *International Journal of Molecular Sciences*, 26(9), 4067. <https://doi.org/10.3390/ijms26094067>
5. Dixit, S., Kumar, A., Srinivasan, K., Vincent, P. M. D. R., & Krishnan, N. R. (2024). Advancing genome editing with artificial intelligence: Opportunities, challenges, and future directions. *Frontiers in Bioengineering and Biotechnology*, 11, 1335901. <https://doi.org/10.3389/fbioe.2023.1335901>

6. Lee, M. (2023). Deep learning in CRISPR-Cas systems: A review of recent studies. *Frontiers in Bioengineering and Biotechnology*, 11, 1226182. <https://doi.org/10.3389/fbioe.2023.1226182>
7. Hillary, V. E., & Ceasar, S. A. (2023). A review on the mechanism and applications of CRISPR/Cas proteins utilized for genome engineering. *Molecular Biotechnology*, 65(3), 311–325. <https://doi.org/10.1007/s12033-022-00567-0>
8. Matsoukas, I. G. (2020). Prime editing: Genome editing for rare genetic diseases without double-strand breaks or donor DNA. *Frontiers in Genetics*, 11, 528. <https://doi.org/10.3389/fgene.2020.00528>
9. Erdogan, S. (2024). Integration of artificial intelligence and genome editing systems for determining the treatment of genetic disorders. *Balkan Medical Journal*, 41(6), 419–420. <https://doi.org/10.4274/balkanmedj.galenos.2024.2024-080824>
10. Manghwar, H., Li, B., Ding, X., Hussain, A., Lindsey, K., Zhang, X., & Jin, S. (2020). CRISPR/Cas systems in genome editing: Methodologies and tools for sgRNA design, off-target evaluation, and strategies to mitigate off-target effects. *Advanced Science*, 7(6), 1902312. <https://doi.org/10.1002/advs.201902312>
11. Vaz, J. M., & Balaji, S. (2021). Convolutional neural networks (CNNs): Concepts and applications in pharmacogenomics. *Molecular Diversity*, 25(3), 1569–1584. <https://doi.org/10.1007/s11030-021-10225-3>
12. Uddin, F., Rudin, C. M., & Sen, T. (2020). CRISPR gene therapy: Applications, limitations, and implications for the future. *Frontiers in Oncology*, 10, 1387. <https://doi.org/10.3389/fonc.2020.01387>
13. Hwang, H., Jeon, H., Yeo, N., & Baek, D. (2024). Big data and deep learning for RNA biology. *Experimental & Molecular Medicine*, 56(6), 1293–1321. <https://doi.org/10.1038/s12276-024-01243-w>
14. Ansah, E. O. (2022). Ethical challenges and controversies in the practice and advancement of gene therapy. *Advances in Cell and Gene Therapy*, 2022(1), 1015996. <https://doi.org/10.1155/2022/1015996>
15. Markus, A. F., Kors, J. A., & Rijnbeek, P. R. (2021). The role of explainability in creating trustworthy artificial intelligence for health care: A comprehensive survey of the terminology, design choices, and evaluation strategies. *Journal of Biomedical Informatics*, 113, 103655. <https://doi.org/10.1016/j.jbi.2020.103655>
16. Athanasopoulou, K., Michalopoulou, V. I., Scorilas, A., & Adamopoulos, P. G. (2025). Integrating artificial intelligence in next-generation sequencing: Advances, challenges, and future directions. *Current Issues in Molecular Biology*, 47(6), 470. <https://doi.org/10.3390/cimb47060470>
17. Braniff, A., Akundi, S. S., Liu, Y., Dantas, B., Niknezhad, S. S., Khan, F., ... Tian, Y. (2025). Real-time process safety and systems decision-making toward safe and smart chemical manufacturing. *Digital Chemical Engineering*, 1, 100227. <https://doi.org/10.1016/j.dche.2025.100227R>

18. Pallavi, G., Altalbe, A., & Kumar, R. P. (2025). QKDTI: A quantum kernel-based machine learning model for drug–target interaction prediction. *Scientific Reports*, *15*(1), 27103. <https://doi.org/10.1038/s41598-025-07303-z>
19. Guo, C., Ma, X., Gao, F., & Guo, Y. (2023). Off-target effects in CRISPR/Cas9 gene editing. *Frontiers in Bioengineering and Biotechnology*, *11*, 1143157. <https://doi.org/10.3389/fbioe.2023.1143157>
20. Du, W., Zhao, L., Diao, K., Zheng, Y., Yang, Q., Zhu, Z., Zhu, X., & Tang, D. (2025). A versatile CRISPR/Cas9 system off-target prediction tool using language models. *Communications Biology*, *8*(1), 882. <https://doi.org/10.1038/s42003-025-08275-6>
21. Tsai, S. Q., Zheng, Z., Nguyen, N. T., Liebers, M., Topkar, V. V., Thapar, V., Wyvakens, N., Khayter, C., Iafrate, A. J., Le, L. P., Aryee, M. J., & Joung, J. K. (2015). GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. *Nature Biotechnology*, *33*(2), 187–197. <https://doi.org/10.1038/nbt.3117>
22. Li, C., Chu, W., Gill, R. A., Sang, S., Shi, Y., Hu, X., Yang, Y., Zaman, Q. U., & Zhang, B. (2023). Computational tools and resources for CRISPR/Cas genome editing. *Genomics, Proteomics & Bioinformatics*, *21*(1), 108–126. <https://doi.org/10.1016/j.gpb.2022.02.006>
23. Konstantakos, V., Nentidis, A., Krithara, A., & Paliouras, G. (2022). CRISPR-Cas9 gRNA efficiency prediction: An overview of predictive tools and the role of deep learning. *Nucleic Acids Research*, *50*(7), 3616–3637. <https://doi.org/10.1093/nar/gkac192>
24. Vidanagamachchi, S. M., & Waidyaratna, K. M. G. T. R. (2024). Opportunities, challenges, and future perspectives of using bioinformatics and artificial intelligence techniques on tropical disease identification using omics data. *Frontiers in Digital Health*, *6*, 1471200. <https://doi.org/10.3389/fdgth.2024.1471200>
25. Park, S. H., & Bao, G. (2021). CRISPR/Cas9 gene editing for curing sickle cell disease. *Transfusion and Apheresis Science*, *60*(1), 103060. <https://doi.org/10.1016/j.transci.2021.103060>
26. Burnight, E. R., Giacalone, J. C., Cooke, J. A., Thompson, J. R., Bohrer, L. R., Chirco, K. R., Drack, A. V., Fingert, J. H., Worthington, K. S., Wiley, L. A., Mullins, R. F., Stone, E. M., & Tucker, B. A. (2018). CRISPR-Cas9 genome engineering: Treating inherited retinal degeneration. *Progress in Retinal and Eye Research*, *65*, 28–49. <https://doi.org/10.1016/j.preteyeres.2018.03.003>
27. Serrano, D. R., Luciano, F. C., Anaya, B. J., Ongoren, B., Kara, A., Molina, G., Ramirez, B. I., Sánchez-Guirales, S. A., Simon, J. A., Tomietto, G., Rapti, C., Ruiz, H. K., Rawat, S., Kumar, D., & Lalatsa, A. (2024). Artificial intelligence (AI) applications in drug discovery and drug delivery: Revolutionizing personalized medicine. *Pharmaceutics*, *16*(10), 1328. <https://doi.org/10.3390/pharmaceutics16101328>

28. Chuai, G., Ma, H., Yan, J., Chen, M., Hong, N., Xue, D., Zhou, C., Zhu, C., Chen, K., Duan, B., Gu, F., Qu, S., Huang, D., Wei, J., & Liu, Q. (2018). DeepCRISPR: Optimized CRISPR guide RNA design by deep learning. *Genome Biology*, 19(1), 80. <https://doi.org/10.1186/s13059-018-1459-4>

29. Sherkatghanad, Z., Abdar, M., Charlier, J., & Makarenkov, V. (2023). Using traditional machine learning and deep learning methods for on- and off-target prediction in CRISPR/Cas9: A review. *Briefings in Bioinformatics*, 24(3), bbad131. <https://doi.org/10.1093/bib/bbad131>

30. Yang, C., Fang, Q., Li, M., et al. (2025). Prime editor with rational design and AI-driven optimization for reverse editing window and enhanced fidelity. *Nature Communications*, 16, 5144. <https://doi.org/10.1038/s41467-025-60495-w>

31. Zhu, X., Xu, Y., Yu, S., Lu, L., Ding, M., Cheng, J., Jin, P., & Wang, Y. (2022). Machine learning methods for on-target and off-target prediction of CRISPR/Cas9. *Methods*, 203, 188–197. <https://doi.org/10.1016/j.ymeth.2022.04.013>

32. Zhang, D., Hurst, T., & Duan, D. (2021). Off-target effects in CRISPR/Cas9 gene editing. *Frontiers in Genetics*, 12, 639076. <https://doi.org/10.3389/fgene.2021.639076>

33. Cui, Y., Xu, J., Cheng, M., Liao, X., & Peng, S. (2018). Review of CRISPR/Cas9 sgRNA design tools. *Interdisciplinary Sciences: Computational Life Sciences*, 10(2), 455–465. <https://doi.org/10.1007/s12539-017-0298-7>

34. Pandey, S., Choudhari, J. K., Tripathi, A., Singh, A., Antony, A., & Chouhan, U. (2025). Artificial intelligence-based genome editing in CRISPR/Cas9. In *Methods in Molecular Biology* (Vol. 2952, pp. 273–282). Springer. https://doi.org/10.1007/978-1-0716-4690-8_16

35. Ansori, A. N., Antonius, Y., Susilo, R. J., Hayaza, S., Kharisma, V. D., Parikesit, A. A., Zainul, R., Jakhmola, V., Saklani, T., Rebezov, M., Ullah, M. E., Maksimiuk, N., Derkho, M., & Burkov, P. (2023). Application of CRISPR-Cas9 genome editing technology in various fields: A review. *Narra Journal*, 3(2), e184. <https://doi.org/10.52225/narra.v3i2.184>

36. Ennab, M., & McHeick, H. (2024). Enhancing interpretability and accuracy of AI models in healthcare: A comprehensive review on challenges and future directions. *Frontiers in Robotics and AI*, 11, 1444763. <https://doi.org/10.3389/frobt.2024.1444763>

37. Abbasi, A. F., Asim, M. N., & Dengel, A. (2025). Transitioning from wet lab to artificial intelligence: A systematic review of AI predictors in CRISPR. *Journal of Translational Medicine*, 23, 153. <https://doi.org/10.1186/s12967-024-06013-w>

38. Wu, Y., & Xie, L. (2025). AI-driven multi-omics integration for multi-scale predictive modeling of genotype-environment-phenotype relationships. *Computational and Structural Biotechnology Journal*, 27, 265–277. <https://doi.org/10.1016/j.csbj.2024.12.030>